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Abstract

A _nite element formulation of the piezoelectric vibrations of quartz resonators based on Mindlin plate
theory is derived[ The higher!order plate theory is employed for the development of a collection of suc!
cessively higher!order plate elements which can be e}ective for a broad frequency range including the
fundamental and overtone modes of thickness!shear vibrations[ The presence of electrodes is also considered
for their mechanical e}ects[

The mechanical displacements and electric potential are combined into a generalized displacement _eld\
and the subsequent derivations are carried out with all the generalized equations[ Through the standard
_nite element procedure\ the vibration frequency\ the vibration mode shapes and the electric potential
distribution are obtained[ The frequency spectra are compared with some well!known experimental results
with good agreement[

Our previous experience with _nite element analysis of high!frequency quartz plate vibrations leads us to
believe that memory and computing time will always remain as key issues despite the advances in computers[
Hence\ the use of sparse matrix techniques\ e.cient eigenvalue solvers\ and other reduction procedures are
explored[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The application of _nite element method in the analysis of vibrations of quartz crystal plate
resonators has been studied by many authors in the last decades\ and practical results have been
obtained gradually through these e}orts[ Given the fact that the problem is greatly complicated
by the higher vibration frequency\ which means fundamental thickness!shear frequency here\ in
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comparison with the conventional structural vibration problem in ~exural modes and limited
interest in the _nite element analysis\ only a few of the programs developed so far have found
applications in the design process and analysis of new products\ but further interest have been
inspired by the increasingly active research projects and promising results which could have a big
impact on the design of quartz crystal resonators in the future[

Even though the analytical approach of plate resonators has been restricted to the two!dimen!
sional plate equations with straight!crested wave solutions "see e[g[ Mindlin and Gazis\ 0851^ Lee
and Wang\ 0883^ Wang and Momosaki\ 0886# for obvious reasons\ the _nite element formulations
have been drawn from three!dimensional piezoelectricity equations and various two!dimensional
plate theories[ Lee and Tang "0875# implemented the _nite element analysis of the _rst!order
Mindlin plate equations for the stress sensitivity and vibration analysis of circular crystal
resonators[ With the three!dimensional incremental theory for frequency!temperature relations of
quartz crystals\ Yong "0876# studied the frequency!temperature behavior of crystal bar\ plate\ and
tuning!fork type resonators[ Later\ the two!dimensional incremental theory were implemented for
the _nite element analysis of plate resonators "Yong\ 0877#[ Can_eld et al[ "0880\ 0881# studied
the same problem with the implementation of the three!dimensional piezoelectricity with thermal
e}ect considerations[ Mindlin _rst!order plate theory was implemented for the mechanical
vibrations of crystal resonators by Yong et al[ "0880\ 0881# and for the frequency shift due to
temperature variations by Antonova and Silvester "0883#[ In the _nite element implementation of
Lee plate theory\ Yong and Zhang "0882\ 0883# developed a perturbation technique to consider
the piezoelectric e}ect in the modeling of quartz plate resonators[ The same _nite element program
was also used for straight!crested wave solutions of thin _lm piezoelectric resonators by Zhang
and Yong "0884#[ To reduce the number of equations in the two!dimensional _nite element
implementation of the plate theory\ a creative one!dimensional _nite element formulation has been
crafted by Sekimoto and Watanabe "0889#[ Noting that the higher!order plate theory may actually
reduce the number of equations in the _nite element implementation in comparison with three!
dimensional approach "Zhang and Yong\ 0884#\ which is particularly important in the high
frequency vibration analysis\ Yong et al[ "0885# implemented Mindlin higher!order plate theory
for quartz resonator analysis with _nite strip formulation[ Of course\ the systematic study of the
accuracy of plate theories by Yong et al[ "0885# is the basis of the applications of higher!order
theories[ Mindlin third!order plate theory is also used for the _nite element study of the frequency!
temperature behavior of crystal resonators by Yong "0885#[ Lerch "0889# and Lerch and Bauere!
schmidt "0885# extended the application of the piezoelectric three! and two!dimensional _nite
element program into the analysis of quartz resonators[ By approximating the electric _eld\ Stewart
and Stevens "0886# employed the three!dimensional _nite element method for the crystal resonator
analysis[ The computing techniques and resources available for _nite element analysis\ including
e.cient and reliable eigenvalue solvers\ sparse matrix handling techniques\ and parallel computing
have been explored and utilized "Jones and Plassmann\ 0881^ Yong and Cho\ 0885#[ Applications
of general purpose _nite element software such as ANSYS have also been reported by several
authors "see e[g[ Momosaki and Kogure\ 0871^ Beeby and Tudor\ 0884^ So�derkvist\ 0886^ Gehin
et al[\ 0886#[

In this study\ we start with Mindlin higher!order plate theory for piezoelectric crystal plates[ In
the _nite element formulation\ we de_ne the components of the mechanical displacements and
electric potential as the generalized displacement\ and as a consequence the generalized stress and
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Fig[ 0[ Plate coordinates and boundaries[

strain are also de_ned in a similar manner[ Eventually\ this results in a generalized implementation
which is very close to the conventional one for mechanical vibration analysis except the mass terms
corresponding to the electric potential are zeroes\ which leads to a more sparser mass matrix[ The
sparse matrix handling techniques are employed in the assembling and solving of the eigenvalue
problems[ Finally\ we compare the numerical results of the vibration spectrum of a crystal plate
to the well!known experimental measurements by Koga "0852#\ and excellent agreement has been
observed[

1[ Fundamentals of mindlin plate theory

The fundamental equations of Mindlin higher!order piezoelectric plate theory "Mindlin\ 0861\
0873# are based on the in_nite power series expansion of the mechanical displacements and electric
potential in thickness coordinate x1\ as shown in Fig[ 0\ to

uj"x0\ x1\ x2\ t# � s
n�9

u"n#
j "x0\ x2\ t#xn

1\

f"x0\ x1\ x2\ t# � s
n�9

f"n# "x0\ x2\ t#xn
1\ "0#

where u"n#
j and f"n# are nth!order two!dimensional components of the displacements and potential[

The strainÐmechanical displacement and electric _eldÐelectric potential relations of the higher!
order plate theory can be written as
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S "n#
ij � 0

1
ðu"n#

i\ j ¦u"n#
j\i ¦"n¦0#"di1u

"n¦0#
j ¦dj1u

"n¦0#
i #Ł\

E "n#
i � −f"n#

\i −"n¦0#di1f
"n¦0#\ "1#

where di1 is the Kronecker delta[
The two!dimensional linear piezoelectric constitutive equations are

T "n#
ij � s

m�9

Bmn"cijklS
"m#
kl −ekijE

"m#
k #\

D "n#
i � s

m�9

Bmn"eijkS
"m#
jk ¦oijE

"m#
j #\ "2#

where T "n#
ij \ D "n#

i \ S "m#
kl \ E "m#

k \ cijkl\ ekij\ and oij are stress components\ electric displacement components\
strain components\ electric _eld components\ elastic constants\ piezoelectric constants\ and dielec!
tric constants\ respectively[ The integral constant Bmn is

Bmn � 8
1bm¦n¦0

m¦n¦0
\ m¦n � even\

9\ m¦n � odd[

"3#

The two!dimensional stress equations of motion and electrostatics derived from the three!
dimensional ones are

T "n#
ij\i−nT "n−0#

1j ¦BnnT
"n#
j � r s

m�9

Bmnu�
"m#
j \

D "n#
i\i −nD "n−0#

1 ¦BnnD
"n# � 9\ "4#

with

T "n#
j �

0
Bnn

bn ðT1j"b#−"−0#nT1j"−b#Ł\

D "n# �
0

Bnn

bn ðD1"b#−"−0#nD1"−b#Ł\ "5#

where r\ T "n#
j \ D"n#\ T1j"b#\ T1j"−b#\ D1"b#\ and D1"−b# are the density of the crystal\ face traction

di}erence\ face charge di}erence\ upper face traction\ lower face traction\ upper face charge\ and
lower face charge\ respectively[

The boundary conditions for the two!dimensional equations can be directly derived from the
three!dimensional ones with the known expansions of the displacements and potential in power
series[ By de_ning the nth!order surface traction and charge as

t"n#
j �

0
Bnn g

b

−b

tjx
n
1 dx1\ s"n# �

0
Bnn g

b

−b

sxn
1 dx1\ "6#

where tj and s are prescribed surface traction and charge\ we have the following natural boundary
conditions
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tj � T1j\ s � D1 on A\ j � 0\ 1\ 2\

t"n#
j � naT

"n#
aj \ s"n# � naD

"n#
a on C\ a � 0\ 2\ "7#

or their alternatives

uj � u¹ j\ f � f¹ on A\

u"n#
j � u¹ "n#

j \ f"n# � f¹ "n# on C\ "8#

where the barred quantities represent the prescribed boundary values on A and C[ It should be
noted that the boundary conditions in eqn "7#0 are already incorporated into eqn "4# by specifying
T "n#

j and D"n# according to eqn "5#[
These equations have been extensively used for the straight!crested wave solutions of crystal

resonators in conjunction with some approximate techniques such as truncation and one!dimen!
sional approximation "see e[g[ Lee and Wang\ 0883^ Wang and Momosaki\ 0886#[ By formulating
and implementing the higher!order equations in a systematic manner\ we hope that a _nite
element program can be developed for the vibration analysis of crystal resonators at not only the
fundamental thickness!shear but also the higher!order overtone frequencies[

2[ Modi_cations of the plate equations

The higher!order plate equations given in the previous section are complete for the vibration
analysis of quartz plates\ and their application is straightforward[ However\ given the fact that in
piezoelectric resonators the crystal plates are always electroded\ modi_cations are needed for both
the mechanical and piezoelectric vibration analyses[ Furthermore\ we need a proper procedure to
reduce the in_nite system and correct and compensate the _nite set of equations for practical and
accurate solutions[ These modi_cations\ as have been made before by many authors\ include the
consideration of the mechanical e}ects of the platings of the electrodes\ the corrections of the
truncated plate equations\ and the truncation procedure itself[ These procedures have been
developed and employed for many years\ and they can be treated as the standard procedures for
the applications of higher!order plate theories[ Through the modi_cations we present below\ the
plate theory introduced before will be tailored for the crystal resonator vibration analysis at the
fundamental thickness!shear and overtone frequencies[

2[0[ The mechanical effects of platin`s

The thin layers of metal platings on crystal plates for thickness excitation purpose are usually
treated as mass loading on the crystal plates\ and it has been studied by Mindlin "0852#\ Tiersten
"0858# and Lee et al[ "0876#[

We assume the thickness of the platings on both sides of the crystal are identical and denoted
them as 1b?\ and the density of the platings is r?[ The tractions on the faces of the plated crystal
are

T1j"b# � T1j"B#−1b?r?u� j"b#\
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T1j"−b# � T1j"−B#¦1b?r?u� j"−b#\ "09#

where B � b¦1b?\ and T1j"B# and T1j"−B# are the face tractions on the platings[
By substituting eqn "09# into eqn "5#0\ the di}erence of the crystal face tractions will be

T "n#
j �

0
Bnn

ðbnT1j"b#−"−b#nT1j"−b#Ł

� T"n#
j −

bn

Bnn

1b?r?ðu� j"b#¦"−0#nu� j"−b#Ł\ "00#

where T"n#
j is the di}erence of the face tractions of the platings[

In each mode for long wavelengths\ we have

uj"b# � s
n�9

bnu"n#
j \ uj"−b# � s

n�9

"−b#nu"n#
j \ "01#

hence eqn "00# is further simpli_ed to

BnnT
"n#
j � BnnT

"n#
j −1b?r?1b1nu� "n#

j

� BnnT
"n#
j −r s

m�9

"m¦n¦0#RBmnu�
"n#
j \ "02#

where

R �
1b?r?
br

\ "03#

is the mass ratio of the electrodes to the crystal[
Now the stress equations of motion in eqn "4# with platings will be modi_ed to

T "n#
ij\i−nT "n−0#

1j ¦BnnT
"n#
j � r s

m�9

Bmn ð0¦"m¦n¦0#RŁu� "m#
j [ "04#

The mechanical e}ects in eqn "04# are consistent with similar equations by others "Mindlin\ 0852^
Tiersten\ 0854#[

2[1[ Truncations of the equations

The two!dimensional in_nite system has to be truncated to a _nite set for their solutions\ and a
standard truncation procedure proposed by Mindlin "0844\ 0861\ 0873# has been widely employed
"Lee and Wang\ 0883#[ In this study we demonstrate the procedure for the truncation of the third!
order theory of AT!cut quartz plates by setting

u"n#
0 � u"n#

2 � f"n# � T "n#
p � D "n#

i � 9 for n × 2\

T "2#
1 � 9\ u"3#

1 � 9\ u¾ "3#
1 � 9\ u"n#

1 � 9 for n × 3\

p � 0\ 1\ 2\ 3\ 4\ 5\ i � 0\ 1\ 2\ "05#

and from eqn "2#0 we have
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With the given u"3#
1 in eqn "06#\ we can update all the equations containing S "2#

1 \ which are stress
component T "0#

p and T "2#
p "p � 0\ 1\ 2\ 3\ 4\ 5# and electric displacement component D "0#

i and D "2#
i

"i � 0\ 1\ 2#\ to

T "0#
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with

c¹pq � cpq−
cp1c1q

c11

\ c½pq � cpq−
10
14

cp1c1q

c11

\

e¹kp � ckp−
cp1ek1
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Truncations for higher!order equations and other cuts can be carried out in a similar fashion[
In the _nite element implementation\ we have truncated the equations upto the _fth!order[ It has
also been observed from our computation that the truncations and the resulted modi_cations to
the material constants have signi_cant e}ect on certain branches of the frequency spectra[

2[2[ Correction factors

The truncation of the _rst!order equations requires correction factors to warrant accurate
results\ and many correction factors have been suggested "see e[g[ Mindlin\ 0844\ 0852\ 0861^
Tiersten\ 0858# with various considerations including the presence of electrodes[ In this study\ the
correction factors proposed by Mindlin "0844# is used as

c¹pq � kpkqcpq\ e¹ip � kpeip\ kp � 8
p1

01
\ p\ q � 1\ 3\ 5\

0\ p\ q � 0\ 2\ 4[

"19#

These truncated and corrected equations with plating considerations will be the plate equations
for _nite element implementation[ In the computer program\ the plate theory upto the _fth!order
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is implemented so the computation can be made in a wide frequency range[ The selection of the
order of the plate theory for the computation has been discussed by Yong et al[ "0884#\ but we
also _nd that the aspect ratios and the frequency are the important factors[

3[ Variational principles

The two!dimensional variational equations of higher!order plate theory\ which will be the basis
of the _nite element formulation\ for mechanical vibrations can be given as "see e[g[ Mindlin\ 0844\
0861\ 0873^ Tiersten\ 0858#

s
n gA 0T

"n#
ij\i−nT "n−0#

1j ¦BnnT
"n#
j −r s

m�9

Bmnu�
"m#
j 1du"n#

j dA � 9[ "10#

By applying the divergence theorem\ we have

gA

T "n#
ij\idu"n#

j dA � gA

ð"T "n#
ij du"n#

j #\i−T "n#
ij du"n#

j\i Ł dA

� gC

f "n#
j du"n#

j dS−gA

T "n#
ij du"n#

j\i dA\ "11#

where ni is the outward surface normal of the boundary\ and the surface traction f "n#
j is de_ned as

f "n#
j � niT

"n#
ij [ "12#

By de_nition we have

s
n

"T "n#
ij du"n#

j\i ¦nT "n−0#
1j du"n#

j # � s
n

T "n#
ij dS "n#

ij [ "13#

The substitution of eqns "11# and "13# into eqn "10# yields the variational equations of mechanical
vibrations as

s
n gA 0T

"n#
ij dS "n#

ij ¦r s
m�9

Bmnu�
"m#
j du"n#

j 1 dA � s
n 0gC

f "n#
j du"n#

j dS¦gA

F "n#
j du"n#

j dA1\ "14#

where

F "n#
j � BnnT

"n#
j [ "15#

In a similar fashion\ we have variational equations of electrostatics as

s
n gA

D "n#
i dE "n#

i dA � −s
n 0gC

q"n#df"n# dS¦gA

Q "n#df"n# dA1\ "16#

and the surface charges and face charges are de_ned as
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q"n# � niD
"n#
i \ Q "n# � BnnD

"n#[ "17#

For a piezoelectric solid we have the virtual electric enthalpy density de_nition "Mindlin\ 0861#

dW � T "n#
ij dS "n#

ij −D "n#
i dE "n#

i \ "18#

thus the previous variational eqns "14# and "16# can be combined into

s
n gA $"T

"n#
ij dS "n#

ij −D "n#
i dE "n#

i # dA¦r s
m�9

Bmnu�
"m#
j du"n#

j dA%� s
n gC

" f "n#
j du"n#

j ¦q"n#df"n## dS

¦s
n gA

"F "n#
j du"n#

j ¦Q "n#df"n## dA[ "29#

Now we can use the variational eqn "29# for the _nite element formulation of the higher!order
plate theory[ Ostensibly\ the combination of the two variational equations\ as we shall show next\
is intended to aid the generalized formulation of the piezoelectric plate vibration problem[

4[ Generalized _nite element formulation

Traditionally\ piezoelectric problems have been formulated by separating the mechanical vari!
ables\ which are displacements\ and electric variables\ which are electric potentials in most cases\
in the formation of the linear equation systems "see e[g[ Allik and Hughes\ 0869^ Lerch\ 0889^
Yong and Zhang\ 0882\ 0883\ 0884#[ By taking this approach\ the two sets of equations will be
eventually reduced to the mechanical vibration problem through the elimination of the electric
one\ and many techniques have been proposed for the condensation of the sti}ness matrix "Allik
and Hughes\ 0869^ Lerch\ 0889#\ including a perturbation technique "Yong and Zhang\ 0882\ 0883\
0884#[ However\ it has also been noticed lately that the generalized approach\ which means the
mechanical displacement and electric potentials will be combined to form a generalized dis!
placement _eld\ may also be advantageous since the costly condensation of the sti}ness matrix can
be avoided to speed up the eigenvalue computation "Yong and Cho\ 0885#[

In this paper\ the higher!order piezoelectric plate theory is presented in a generalized matrix
form to facilitate the _nite element implementation[ The representative matrices are illustrated\
again\ with the third!order plate theory[

We start with the generalized nth!order displacement _eld u"n#
j "n � 9\ 0\ 1\ 2#

u"n# � "u"n#
0 \ u"n#

1 \ u"n#
2 \ f"n##3×0\ "20#

and accordingly we have the generalized displacement vector from the third!order plate theory as

u � "u"9#\ u"0#\ u"1#\ u"2##05×0[ "21#

We further de_ne the generalized nth!order strain and stress vectors as

S"n# � "S "n#
0 \ S "n#

1 \ S "n#
2 \ S "n#

3 \ S "n#
4 \ S "n#

5 \ E "n#
0 \ E "n#

1 \ E "n#
2 #8×0\

T"n# � "T "n#
0 \ T "n#

1 \ T "n#
2 \ T "n#

3 \ T "n#
4 \ T "n#

5 \ D "n#
0 \ D "n#

1 \ D "n#
2 #8×0[ "22#
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From the generalized strainÐdisplacement relations in eqn "1#\ by rearranging the terms\ we can
write

S"n# � 1uu
"n#¦1"n¦0#

u u"n¦0#\ "23#

where the two strain operators are de_ned as

1u �
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and _nally\ eqn "23#\ we de_ne the generalized strain vector\ with

S �
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The linear piezoelectric constitutive relations given in eqn "2# can also be generalized and written
in matrix form as

T � CS\ "26#

where

C �

K

H

H

H

H

k
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\

CÞ � $
c −eT

e o %8×8

[ "27#

It is interesting to note that the generalized material constant matrix is no longer symmetric[
In matrix form\ the variational eqn "29# can be written as

gA

"dSTcS−dSTeTE−dETeS−dEToE¦rduTmu�# dA

� gC

"duTf¦dfTq# dS¦gA

"duTF¦dfTQ# dA\ "28#

where m\ f\ q\ F\ and Q are the mass matrix\ the surface traction vector\ surface charge vector\ face
traction vector\ and face charge vector\ respectively\ are to be combined into the generalized
surface traction and face traction from now on[

In generalized notations we can write eqn "28# as

gA

dSTDS dA¦gA

rduTmu� dA � gC

duTf dS¦gA

duTF dA\ "39#

where

D �

K

H

H

H

H

k

B99DÞ 9 B91DÞ 9

9 B00DÞ 9 B02DÞ

B19DÞ 9 B11DÞ 9

9 B20DÞ 9 B22DÞ

L

H

H

H

H

l25×25

\
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DÞ � $
c −eT

−e −o %8×8

\

m �

K

H

H

H

H

k

m"9#
9 9 m"1#

9 9

9 m"0#
0 9 m"2#

0

m"9#
1 9 m"1#

1 9

9 m"0#
2 9 m"2#

2

L

H

H

H

H

l05×05

\

m"n#
m � rBmn ð0¦"m¦n¦0#RŁ

K

H

H

H

H

k

0 9 9 9

9 0 9 9

9 9 0 9

9 9 9 9

L

H

H

H

H

l3×3

[ "30#

It should be emphasized that the mass matrix has zero terms corresponding to the electric potentials[
Following the conventional discretization procedure\ we start the _nite element implementation

with

u �

K

H

H

H

H

k

u"9#

u"0#

u"1#

u"2#

L

H

H

H

H

l05×0

� ðN
0N
1\ [ [ [ \ N
 lŁ05×05l

K

H

H

H

H

k

U0

U1

*

Ul

L

H

H

H

H

l05l×0

� NU\

N
 i � NiI05×05\ S � 1SNU � BU\

B � ðB0B1\ [ [ [ \ BlŁ\ i � 0\ 1\ [ [ [ \ l\ "31#

where l is the number of nodes of each element\ U is the discretized displacement vector\ Ni are
the shape functions\ I is the identity matrix\ and the Bi matrix is given as

Bi �

K

H

H

H

H

k

1uNi 1"0#
u Ni 9 9

9 1uNi 1"1#
u Ni 9

9 9 1uNi 1"2#
u Ni

9 9 9 1uNi

L

H

H

H

H

l25×05

[ "32#

The discretization of the variational eqn "39# gives

dUT 0gA

BTDB dAU¦gA

NTmN dAUÝ−gC

NTf dS−gA

NTF dA1� 9\ "33#

and the discretized and generalized equations of motion in matrix form as

KU¦MUÝ � FC¦FA\ "34#

where
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K � gA

BTDB dA\ M � gA

NTmN dA\

FC � gC

NTf dS\ FA � gA

NTF dA\ "35#

are generalized sti}ness matrix\ mass matrix\ surface traction vector\ and face traction vector\
respectively[

Now we have the conventional _nite element equation given in eqn "34#\ which is the identical
one we already know in structural mechanics problems\ where the _nite element method has been
intensively studied for decades[ By adopting this formulation\ it is hoped that all the sophisticated
techniques can be utilized[

For free vibrations\ by setting the traction vectors to zero and assuming the solution is harmonic\
we have the generalized vibration eigenvalue problem from eqn "34#

KU−v1MU � 9\ "36#

where v is the vibration frequency[ Usually we normalized the frequency by the fundamental
thickness!shear frequency

v9 �
p

1bX
c55

r
[ "37#

It is clear from the matrix equations that the mass matrix is no longer diagonal due to the
coupling of modes\ and the o}!diagonal terms have to be included in the computations[ A
comparison with the conventional _nite element analysis will tell that this will add further di.culty
to the eigenvalue computation[ The high vibration frequency will also require a _ner mesh\ which
translates to a very large\ usually several millions\ linear equation system[ For this reason\ an
e.cient eigenvalue solver can handle sparse matrix computation\ which is standard in most _nite
element analysis programs today\ is essential to this program[ Also it should be realized that we
have a critical requirement for such eigenvalue solvers\ namely they should be able to extract all
the eigenvalues inside a given frequency interval\ usually in the vicinity of the resonance vibration
frequency[ Eigenvalue solvers capable of this kind of computation are di.cult to _nd\ and extra
e}orts have to be made to modify the existing ones in public domains such as the Netlib\ or locate
available commercial codes[

As an example\ we computed the frequency spectra of a crystal plate with third!order plate
theory and four!node element to make comparisons with the experimental data by Koga "0852#[
It is found that the frequency spectra from pure mechanical vibrations agree well with the measure!
ment in Fig[ 1\ and the frequency change due to piezoelectric e}ect is clearly displayed in Fig[ 2[
The frequency di}erence between mechanical and piezoelectric vibrations is shown in Fig[ 3[

5[ Conclusions

The higher!order Mindlin plate theory has been systematically modi_ed for applications in the
piezoelectric vibration analysis of crystal resonators for the resonance frequency spectrum[ By
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Fig[ 1[ Normalized frequency vs length to thickness ratio for a crystal plate with width to thickness ratio c:b � 05[2559[
The computed frequency spectra from the mechanical vibrations "�# is compared with the experimental data "dark
square# from Koga "0852#[

adopting a generalized approach\ the modi_ed plate theory is successfully implemented for the
_nite element solutions for the vibration problems which have been extensively studied but never
been able to solve for the precise and accurate modeling of crystal resonators[ From the com!
parisons of the numerical results of the mechanical and piezoelectric vibrations\ we found that
this generalized formulation is straightforward and e}ective for the piezoelectric plate vibration
problems[ The results also con_rmed the long time view widely known to researchers that the
piezoelectric e}ects on the free vibrations of the crystal plates can be neglected in the frequency
spectrum analysis since the frequency shift is tiny and uniform[ For practical purposes\ the
frequency spectrum from the mechanical vibrations will provide a valuable and precise pattern for
better selection of plate geometry[ We also found that we have produced the frequency spectra
from both the mechanical and piezoelectric vibrations which match the experimental data well[

It is agreed that the modeling of piezoelectric devices with _nite element method continues to
be a challenge\ partially due to the extremely high frequency\ which requires the unusually larger
number of equations\ in comparison with conventional _nite element analysis applications[ This
challenge spreads further to strict requirement for e.cient mathematical subroutines essential to the
analysis\ namely the eigenvalue solvers and linear equation solvers[ Fortunately\ the mathematical
community has been inspired and encouraged by these rigorous attempts\ and tremendous progress
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Fig[ 2[ Normalized frequency vs length to thickness ratio for a crystal plate with width to thickness ratio c:b � 05[2559[
The computed frequency spectra from the piezoelectric vibrations "r# is compared with the experimental data "dark
square# from Koga "0852#[

has been made for the e.cient and fast solvers\ while such e}orts are continuing to meet the
demands for even larger problems[ Also the availability of powerful computers provides another
opportunity\ particularly with the proliferation of multiple processors systems which can be easily
programmed to solve the larger number of equations from the problem[

On the piezoelectricity theory\ tremendous e}orts have been made to make the approximate
theories to be able to solve the real problem easily and accurately[ These e}orts will also assist the
better _nite element implementation for less equations but accurate results[ Particularly\ the e}orts
in reducing the order of the plate theory and the elimination of the electric variable from the
equations will have great impact on the computing aspect[

With the combination of the e}orts in all directions\ it is expected that we shall be able to
provide e.cient and accurate numerical solutions to assist the crystal resonator development[
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Fig[ 3[ Comparison of the computed normalized frequency vs length to thickness ratio from the piezoelectric vibrations
"r# and mechanical vibrations "�# for a crystal plate with width to thickness ratio c:b � 05[2559[
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